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A real theorem

Theorem [Poincaré-Hopf]: M: compact smooth manifold, V : vector field on
M with isolated singularities (= isolated zeroes). Then

> index, (V) =x(M)
pe{V=0}
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M.: compact smooth manifold, V : vector field on
M with isolated singularities (= isolated zeroes). Then

Z index, (V) = x(M)
pe{V=0}

index, (V) is a number depending only on the local behavior of V around p

information around singularities add up to a invariant”

Today: analogue for holomorphic foliations on a complex manifold

Baum-Bott Theorem, 1972
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M : complex manifold of dimension n
Regular holomorphic foliation .# on M
+— involutive holomorphic sub-bundle T.% c TM

— [T TF1CTF

k:= rank of .¥ = rank of T.%#

Normal bundle: N.% := TM/T.# = holomorphic vector bundle of rank n — k
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E — M vector bundle

¢ € Clzy, ..., zn] homogeneous symmetric polynomial of degree 1 <{ < n
—  ¢(E) € H*(M, C)
Chern-Weil

Ex.: & = & the £ elementary symmetric polynomial ~ &, (E) = c¢(E) the £'™ Chern class
compute ¢ in the curvature ©(D) of some connection D on E

Z regular hol. foliation on M of rank k,
N.Z normal bundle, ¢ € Clzy,...,z,] of degree n — k < £ < n. Then

&(NZ) =0 in H*(M, C).

Proof: existence of good connections on N.%, compatible with both the
holomorphic and foliated structure
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Def.: @¢: TM — NF = TM/T.Z canonical projection
D connection on N.7 is if of type (1,0) and
wD(pev) = o, V], YueTF,veTM

LeNy
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T.Z is involutive [T#, TZ#] C T
saturated, that is, normal sheaf N.% = TM/T.Z torsion free

k = rank of .# := generic rank of T.7
sing7 :={x e M | N.% not locally free }

codim sing.# > 2
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T =0Om-X and NF =TM/Opm - X = singZ ={X =0}

General rank-one foliation +— s € H*(M, TM ® L) where L ~ T.#* and
sing.7 = {s =0}

Assume M compact. Fix ¢ € Clzy, ..., z,] of
deg. n—k <€ < n. Then, VZ C sing.Z connected component 3 a
Res?(.Z;Z) € H*(M,C) and

> Res®(7;Z) = ¢(NF)
Z(CsingF
Comments:
Res?(.Z; Z) depends only on the local behavior of .% around Z
Localization formula for &(N.%)

Consequence of vanishing theorem

6/14



Naive “proof” of BB Theorem:
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of BB Theorem: only local behaviour around Z matters
Foliation is regular on M \ Z. Take a basic connection DM\# on NZ|m\z
Glue with an arbitrary connection D% near Z

~= connection D on N.%
By vanishing theorem, ¢(©(D)) is a 2{-form supported near Z
~~ define Res? (.7; Z) = [p(D)] € HX(M, C)

Cannot define connections on the singular sheaf N.%

Work with of N.#

0—-EN —Eny— -+ —E —EFE —NF -0

Then

and similarly for Chern forms
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Res®(.7; Z) € H¥*(M, C) such that }_ , .5 Res®(.7; Z) = $(N.7)

Fundamental question: How to compute/represent Res® (. Z)?

7 of rank-one and isolated singularities

Around p € sing#, T.Z locally generated by X =} q; (z)a%i with
{a; =---=a, =0} ={0}. Then,

Res® (7;p) = (m)n JMZE . q)((aai)i‘j) dzi .. A dza

27T 0z; ap - - ap

(Grothendieck residue)

All known cases rely on a reduction to the above situation

When deg ¢ =n —k+ 1, can slice % by transversal disk on which .7
induces rank-one foliation with isolated singularities

When .7 is rank-one with non-isolated sing., can deform % and use the
above formula. Residues vary continuously
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= dual to differential forms = singular versions of smooth forms

*  Currents can be supported by analytic subvarieties

Example.: f hol. function ~» 1/f principal value current

1
<f,£> = IimJ é £ a test 2n — form
[f12>e f

f e—0

0(1/f) defined by

<5%n> = <%,5n>, 1 a test (2n — 1) — form

Remark: supp 0(1/f) C {f = 0}
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@0 : TM — N.Z canonical projection and associated complex of vector bundles
is exact outside Z.

take a basic connection Dygsic on NF|p 2

using inverses of ¢y define connections 15k on Eylm\z compatible
with the complex (1)

Cut-off procedure: Z C {s = 0} for some s € H°(M, &), € hol. v.b.
Dg = (1 —x(IsP/€))Dx + x(Is?/€)Dx,

where X ~ 1(1 40 and Dy auxiliary connection ~

O
z
N
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By Chern-Weil c;(N.Z) represented by

N . ok R R
H(det [1+i@(6§)})( V14 a@dy)l.. . eDe))
k=0

+--+ 0, (©(DY)]...[0(D§)),
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By Chern-Weil c;(N.Z) represented by

N . "

11 (det 1+ i@(ﬁ,ﬁ)}) g ACIRINERR)

k=0

Over {|s]> > €}, 6,§ = [~)k compatible with the exact complex, so
$(O(DY)...10(DF)) = $(O(Dyasic)) =0 on {Is? > ¢}
and BB define Res? (.#; Z) as the class of
%(e) = d(@(DY)I...1O(DF))

=

Does lim¢_,0 rdz)(e) exist ?
If connections have “good” singularities, then
R® = lim r¥(e
z e—0 Z( )

is a well defined current.
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resolution by locally free sheaves

05 En DN Ey , N 22, L o TM S NF -0

and associated complex of vector bundles is exact outside Z.

Equip Ex, k=0,...,N with herm. metrics ~» minimal inverses oy : Ex_3 — Ex
CroKQK = @, Im o LIm @i

and Ox4+10x = 0.
o is smooth outside of Z and have
along Z

©: 09 — Om mult. by (fy,...,f,)T, then o: g (‘%g,...,fp)
There is a basic connection on N.# over M \ Z having
almost semi-meromorphic singularities along Z

(=]

Do:=D™ — (D¢;) 01(dz- 0/0z)
and

Dyasic(@ov) := —@oDo(moV),
where 7y = I — ;07 orthogonal proj. from TM onto (Img;)* = (T.#)*+
ORI
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Good connections

Once we have Dygsic on N.Z, can use ¢ and o, to induce compatible
connections Dy on Ey.

Dy @ P = Pe°Vx

13/14



Once we have Dygsic on N.Z, can
Dk on Ek.

Gluing ~ _
Di = (1 —x(Is|*/€))Dx + x(Isl*/€)Dx.

>
Z
N,
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Since singularities are nearly algebraic, can use resolutions (Hironaka etc),
reduce to divisorial singularity case and prove that

r¥(e) = $(O(D})l...1O(D§))
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has a well defined limit when € — 0
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Once we have Dygsic on N.Z, can
Dk on Ek.

Gluing ~ _
Di = (1 —x(Is|*/€))Dx + x(Isl*/€)Dx.

Since singularities are nearly algebraic, can use resolutions (Hironaka etc),
reduce to divisorial singularity case and prove that

r¥(e) = $(O(D})l...1O(D§))

om

has a well defined limit when € — 0

Multivariable residue theory: Andersson, Coleff, Herrera, Larkang Passare,
Samuelsson-Kalm, Tsikh, Wulcan, Yger, etc.
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Thank you!



