Residue currents for holomorphic foliations

Lucas Kaufmann joint with R. Lärkäng and E. Wulcan

Center for Complex Geometry - Institute for Basic Science

August 2022 Pacific Rim Complex and Symplectic Geometry Conference

A real theorem

Theorem [Poincaré-Hopf]: M: compact smooth manifold, \mathcal{V} : vector field on M with isolated singularities (= isolated zeroes). Then

$$\sum_{\in \{\mathcal{V}=0\}} \mathsf{index}_p(\mathcal{V}) = \chi(\mathcal{M})$$

 \star index_p(\mathcal{V}) is a number depending only on the local behavior of \mathcal{V} around p

A real theorem

Theorem [Poincaré-Hopf]: M: compact smooth manifold, \mathcal{V} : vector field on M with isolated singularities (= isolated zeroes). Then

$$\sum_{\in \{\mathcal{V}=0\}} \mathsf{index}_p(\mathcal{V}) = \chi(M)$$

 \star index_p(\mathcal{V}) is a number depending only on the local behavior of \mathcal{V} around p

"Local information around singularities add up to a global invariant"

A real theorem

Theorem [Poincaré-Hopf]: M: compact smooth manifold, \mathcal{V} : vector field on M with isolated singularities (= isolated zeroes). Then

$$\sum_{\in \{\mathcal{V}=0\}} \mathsf{index}_p(\mathcal{V}) = \chi(M)$$

 \star index_p(\mathcal{V}) is a number depending only on the local behavior of \mathcal{V} around p

"Local information around singularities add up to a global invariant"

Today: analogue for holomorphic foliations on a complex manifold Baum-Bott Theorem, *1972*

 $M: \mathsf{complex}\xspace$ manifold of dimension n

 $\boldsymbol{M}: \text{complex}\xspace$ manifold of dimension \boldsymbol{n}

Regular holomorphic foliation ${\mathscr F}$ on M

 $\longleftrightarrow \quad \text{involutive holomorphic sub-bundle } \mathsf{T}\mathscr{F} \subset \mathsf{T}\mathsf{M}$

 $M: \mathsf{complex}\xspace$ manifold of dimension n

Regular holomorphic foliation ${\mathscr F}$ on M

 $\longleftrightarrow \quad \text{involutive holomorphic sub-bundle } \mathsf{T}\mathscr{F} \subset \mathsf{T}M$

 \hookrightarrow $[T\mathscr{F}, T\mathscr{F}] \subset T\mathscr{F}$

 $M: \mathsf{complex}\xspace$ manifold of dimension n

Regular holomorphic foliation ${\mathscr F}$ on M

 $\longleftrightarrow \quad \text{involutive holomorphic sub-bundle } \mathsf{T}\mathscr{F} \subset \mathsf{T}\mathsf{M}$ $\hookrightarrow \quad [\mathsf{T}\mathscr{F},\mathsf{T}\mathscr{F}] \subset \mathsf{T}\mathscr{F}$

k:= rank of \mathscr{F} = rank of T \mathscr{F}

 $M: \mathsf{complex}\xspace$ manifold of dimension n

Regular holomorphic foliation ${\mathscr F}$ on M

 $\longleftrightarrow \quad \mbox{involutive holomorphic sub-bundle } \mathsf{T}\mathscr{F} \subset \mathsf{T}\mathsf{M}$ $\hookrightarrow \quad [\mathsf{T}\mathscr{F},\mathsf{T}\mathscr{F}] \subset \mathsf{T}\mathscr{F}$

k:= rank of \mathscr{F} = rank of T \mathscr{F}

Normal bundle: $N\mathscr{F} := TM/T\mathscr{F} =$ holomorphic vector bundle of rank n - k

M : complex manifold of dimension n

Regular holomorphic foliation ${\mathscr F}$ on M

 $\begin{array}{ll}\longleftrightarrow & \mbox{involutive holomorphic sub-bundle } \mathsf{T}\mathscr{F}\subset\mathsf{T}\mathsf{M}\\ & \hookrightarrow & [\mathsf{T}\mathscr{F},\mathsf{T}\mathscr{F}]\subset\mathsf{T}\mathscr{F}\end{array}$

 $k{:=} \mathsf{rank} \mathsf{ of } \mathscr{F} = \mathsf{rank} \mathsf{ of } \mathsf{T} \mathscr{F}$

Normal bundle: $N\mathscr{F} := TM/T\mathscr{F} =$ holomorphic vector bundle of rank n - k

 $E \to M$ vector bundle

 $\varphi \in \mathbb{C}[z_1, \dots, z_n]$ homogeneous symmetric polynomial of degree $1 \leqslant \ell \leqslant n$

 $E \to M$ vector bundle

$$\begin{split} \varphi \in \mathbb{C}[z_1,\ldots,z_n] \text{ homogeneous symmetric polynomial of degree } 1 \leqslant \ell \leqslant n \\ \longrightarrow \quad \varphi(E) \in H^{2\ell}(M,\mathbb{C}) \end{split}$$

Chern-Weil

 $E \to M$ vector bundle

$$\begin{split} \varphi \in \mathbb{C}[z_1,\ldots,z_n] \text{ homogeneous symmetric polynomial of degree } 1 \leqslant \ell \leqslant n \\ \longrightarrow \quad \varphi(E) \in H^{2\ell}(M,\mathbb{C}) \end{split}$$

Chern-Weil

Ex.: $\phi = \mathfrak{S}_{\ell}$ the ℓ^{th} elementary symmetric polynomial $\rightsquigarrow \mathfrak{S}_{\ell}(E) = c_{\ell}(E)$ the ℓ^{th} Chern class

 $E \to M$ vector bundle

$$\begin{split} \varphi \in \mathbb{C}[z_1,\ldots,z_n] \text{ homogeneous symmetric polynomial of degree } 1 \leqslant \ell \leqslant n \\ \longrightarrow \quad \varphi(E) \in H^{2\ell}(M,\mathbb{C}) \end{split}$$

Chern-Weil

Ex.: $\phi = \mathfrak{S}_{\ell}$ the ℓ^{th} elementary symmetric polynomial $\rightsquigarrow \mathfrak{S}_{\ell}(E) = c_{\ell}(E)$ the ℓ^{th} Chern class

 \rightarrow compute ϕ in the curvature $\Theta(D)$ of some connection D on E

$E \to M$ vector bundle

$$\begin{split} \varphi \in \mathbb{C}[z_1,\ldots,z_n] \text{ homogeneous symmetric polynomial of degree } 1 \leqslant \ell \leqslant n \\ \longrightarrow \quad \varphi(E) \in H^{2\ell}(M,\mathbb{C}) \end{split}$$

Chern-Weil

Ex.: $\phi = \mathfrak{S}_{\ell}$ the ℓ^{th} elementary symmetric polynomial $\rightsquigarrow \mathfrak{S}_{\ell}(E) = c_{\ell}(E)$ the ℓ^{th} Chern class

 \rightsquigarrow compute ϕ in the curvature $\Theta(D)$ of some connection D on E

Theorem [Baum-Bott 1972]: \mathscr{F} regular hol. foliation on M of rank k, N \mathscr{F} normal bundle, $\varphi \in \mathbb{C}[z_1, \ldots, z_n]$ of degree $n - k < \ell \leqslant n$.

$E \to M$ vector bundle

$$\begin{split} \varphi \in \mathbb{C}[z_1,\ldots,z_n] \text{ homogeneous symmetric polynomial of degree } 1 \leqslant \ell \leqslant n \\ \longrightarrow \quad \varphi(E) \in H^{2\ell}(M,\mathbb{C}) \end{split}$$

Chern-Weil

Ex.: $\phi = \mathfrak{S}_{\ell}$ the ℓ^{th} elementary symmetric polynomial $\rightsquigarrow \mathfrak{S}_{\ell}(E) = c_{\ell}(E)$ the ℓ^{th} Chern class

 \rightsquigarrow compute ϕ in the curvature $\Theta(D)$ of some connection D on E

Theorem [Baum-Bott 1972]: \mathscr{F} regular hol. foliation on M of rank k, N \mathscr{F} normal bundle, $\phi \in \mathbb{C}[z_1, \ldots, z_n]$ of degree $n - k < \ell \leq n$. Then

 $\varphi(N\mathscr{F}) = 0 \text{ in } H^{2\ell}(M, \mathbb{C}).$

$E \to M$ vector bundle

$$\begin{split} \varphi \in \mathbb{C}[z_1,\ldots,z_n] \text{ homogeneous symmetric polynomial of degree } 1 \leqslant \ell \leqslant n \\ \longrightarrow \quad \varphi(E) \in H^{2\ell}(M,\mathbb{C}) \end{split}$$

Chern-Weil

Ex.: $\phi = \mathfrak{S}_{\ell}$ the ℓ^{th} elementary symmetric polynomial $\rightsquigarrow \mathfrak{S}_{\ell}(E) = c_{\ell}(E)$ the ℓ^{th} Chern class

 \rightsquigarrow compute ϕ in the curvature $\Theta(D)$ of some connection D on E

Theorem [Baum-Bott 1972]: \mathscr{F} regular hol. foliation on M of rank k, N \mathscr{F} normal bundle, $\varphi \in \mathbb{C}[z_1, \ldots, z_n]$ of degree $n - k < \ell \leqslant n$. Then

 $\phi(N\mathscr{F}) = 0 \text{ in } H^{2\ell}(M, \mathbb{C}).$

Proof: existence of good connections on N \mathscr{F} , compatible with both the holomorphic and foliated structure

Basic connections

Def.: $\phi_0 : TM \to \mathbb{N}\mathscr{F} = TM/T\mathscr{F}$ canonical projection D connection on $\mathbb{N}\mathscr{F}$ is basic if of type (1,0) and

$$\begin{split} \mathfrak{l}(\mathfrak{u})D(\phi_0\nu) &= \phi_0[\mathfrak{u},\nu], \quad \forall \mathfrak{u} \in T \mathscr{F}, \nu \in TM \\ & \checkmark \mathfrak{eNS} \end{split}$$

Def.: $\varphi_0 : TM \to \mathbb{N}\mathscr{F} = TM/T\mathscr{F}$ canonical projection D connection on $\mathbb{N}\mathscr{F}$ is basic if of type (1, 0) and $\iota(u)D(\varphi_0 \nu) = \varphi_0[u, \nu], \quad \forall u \in T\mathscr{F}, \nu \in TM$

Prop: If D is basic and deg $\phi > n - k$, then $\phi(\Theta(D)) = 0$

Def.: $\varphi_0 : TM \to \mathbb{N}\mathscr{F} = TM/T\mathscr{F}$ canonical projection D connection on $\mathbb{N}\mathscr{F}$ is basic if of type (1, 0) and $\iota(u)D(\varphi_0 \nu) = \varphi_0[u, \nu], \quad \forall u \in T\mathscr{F}, \nu \in TM$

Prop: If D is basic and deg $\phi > n - k$, then $\phi(\Theta(D)) = 0$

FACT: Regular foliations are rare (e.g. \nexists regular foliation on \mathbb{P}^n)

Def.: $\varphi_0 : TM \to \mathbb{N}\mathscr{F} = TM/T\mathscr{F}$ canonical projection D connection on $\mathbb{N}\mathscr{F}$ is basic if of type (1, 0) and $\iota(u)D(\varphi_0 \nu) = \varphi_0[u, \nu], \quad \forall u \in T\mathscr{F}, \nu \in TM$

Prop: If D is basic and deg $\varphi>n-k,$ then $\varphi(\Theta(D))=0$

FACT: Regular foliations are rare (e.g. \nexists regular foliation on \mathbb{P}^n)

Need to consider singular foliations

Def.: $\varphi_0 : TM \to \mathbb{N}\mathscr{F} = TM/T\mathscr{F}$ canonical projection D connection on $\mathbb{N}\mathscr{F}$ is basic if of type (1, 0) and $\iota(\mathfrak{u})D(\varphi_0 \nu) = \varphi_0[\mathfrak{u}, \nu], \quad \forall \mathfrak{u} \in T\mathscr{F}, \nu \in TM$

Prop: If D is basic and deg $\phi > n - k$, then $\phi(\Theta(D)) = 0$

FACT: Regular foliations are rare (e.g. \nexists regular foliation on \mathbb{P}^n)

Need to consider singular foliations

Def.: A (singular) hol. foliation \mathscr{F} on $M \leftrightarrow$ coherent subsheaf $T\mathscr{F} \subset TM$

- T \mathscr{F} is involutive $[T\mathscr{F}, T\mathscr{F}] \subset T\mathscr{F}$
- saturated, that is, normal sheaf $N\mathscr{F} = TM/T\mathscr{F}$ torsion free

Def.: $\varphi_0 : TM \to \mathbb{N}\mathscr{F} = TM/T\mathscr{F}$ canonical projection D connection on $\mathbb{N}\mathscr{F}$ is basic if of type (1, 0) and $\iota(u)D(\varphi_0 v) = \varphi_0[u, v], \quad \forall u \in T\mathscr{F}, v \in TM$

Prop: If D is basic and deg $\phi > n - k$, then $\phi(\Theta(D)) = 0$

FACT: Regular foliations are rare (e.g. \nexists regular foliation on \mathbb{P}^n)

Need to consider singular foliations

Def.: A (singular) hol. foliation \mathscr{F} on $M \leftrightarrow$ coherent subsheaf $T\mathscr{F} \subset TM$

- T \mathscr{F} is involutive $[T\mathscr{F}, T\mathscr{F}] \subset T\mathscr{F}$
- saturated, that is, normal sheaf $N\mathscr{F} = TM/T\mathscr{F}$ torsion free

 $k = rank \text{ of } \mathscr{F} := generic rank \text{ of } T\mathscr{F}$

sing $\mathscr{F} := \{ x \in M \mid N \mathscr{F}_x \text{ not locally free } \}$

Def.: $\varphi_0 : TM \to \mathbb{N}\mathscr{F} = TM/T\mathscr{F}$ canonical projection D connection on $\mathbb{N}\mathscr{F}$ is basic if of type (1, 0) and $\iota(u)D(\varphi_0 v) = \varphi_0[u, v], \quad \forall u \in T\mathscr{F}, v \in TM$

Prop: If D is basic and deg $\phi > n - k$, then $\phi(\Theta(D)) = 0$

FACT: Regular foliations are rare (e.g. \nexists regular foliation on \mathbb{P}^n)

Need to consider singular foliations

Def.: A (singular) hol. foliation \mathscr{F} on $M \leftrightarrow$ coherent subsheaf $T\mathscr{F} \subset TM$

- T \mathscr{F} is involutive $[T\mathscr{F}, T\mathscr{F}] \subset T\mathscr{F}$
- saturated, that is, normal sheaf $N\mathscr{F} = TM/T\mathscr{F}$ torsion free

 $k = rank \text{ of } \mathscr{F} := generic rank \text{ of } T\mathscr{F}$

sing $\mathscr{F} := \{x \in M \mid N \mathscr{F}_x \text{ not locally free } \}$

Remark: codim sing $\mathscr{F} \ge 2$

 $\label{eq:example: X in M} \begin{array}{l} \mbox{Example: X \in H^0(M,TM) holomorphic vector field on $M \rightsquigarrow$ rank-one foliation} \\ T \mathscr{F} = \mathbb{O}_M \cdot X \quad \mbox{and} \quad N \mathscr{F} = TM/\mathbb{O}_M \cdot X \end{array}$

Example.: $X \in H^0(M, TM)$ holomorphic vector field on $M \rightsquigarrow$ rank-one foliation $T\mathscr{F} = \mathcal{O}_M \cdot X$ and $N\mathscr{F} = TM/\mathcal{O}_M \cdot X \implies sing\mathscr{F} = \{X = 0\}$

Example.: $X \in H^0(M, TM)$ holomorphic vector field on $M \rightsquigarrow$ rank-one foliation

 $\mathsf{T}\mathscr{F} = \mathbb{O}_{\mathsf{M}} \cdot \mathsf{X} \quad \text{and} \quad \mathsf{N}\mathscr{F} = \mathsf{T}\mathsf{M}/\mathbb{O}_{\mathsf{M}} \cdot \mathsf{X} \implies \mathsf{sing}\mathscr{F} = \{\mathsf{X} = \mathsf{0}\}$

General rank-one foliation $\longleftrightarrow s \in H^0(M, TM \otimes L)$ where $L \simeq T\mathscr{F}^*$ and sing $\mathscr{F} = \{s = 0\}$

Example.: $X \in H^0(M, TM)$ holomorphic vector field on $M \rightsquigarrow$ rank-one foliation

 $T\mathscr{F} = \mathcal{O}_{M} \cdot X$ and $N\mathscr{F} = TM/\mathcal{O}_{M} \cdot X \implies sing\mathscr{F} = \{X = 0\}$

General rank-one foliation $\longleftrightarrow s\in H^0(M,TM\otimes L)$ where $L\simeq T\mathscr{F}^*$ and sing $\mathscr{F}=\{s=0\}$

Theorem [Baum-Bott 1972]: Assume M compact. Fix $\varphi \in \mathbb{C}[z_1, \dots, z_n]$ of deg. $n - k < \ell \leq n$.

Example.: $X \in H^0(M, TM)$ holomorphic vector field on $M \rightsquigarrow$ rank-one foliation

 $T\mathscr{F} = \mathcal{O}_{M} \cdot X$ and $N\mathscr{F} = TM/\mathcal{O}_{M} \cdot X \implies sing\mathscr{F} = \{X = 0\}$

General rank-one foliation $\longleftrightarrow s\in H^0(M,TM\otimes L)$ where $L\simeq T\mathscr{F}^*$ and sing $\mathscr{F}=\{s=0\}$

Theorem [Baum-Bott 1972]: Assume M compact. Fix $\phi \in \mathbb{C}[z_1, \ldots, z_n]$ of deg. $n - k < \ell \leq n$. Then, $\forall Z \subset sing\mathscr{F}$ connected component \exists a residue class $\operatorname{Res}^{\phi}(\mathscr{F}; Z) \in H^{2\ell}(M, \mathbb{C})$

Example.: $X \in H^0(M, TM)$ holomorphic vector field on $M \rightsquigarrow$ rank-one foliation

 $T\mathscr{F} = \mathcal{O}_{M} \cdot X$ and $N\mathscr{F} = TM/\mathcal{O}_{M} \cdot X \implies sing\mathscr{F} = \{X = 0\}$

General rank-one foliation $\longleftrightarrow s\in H^0(M,TM\otimes L)$ where $L\simeq T\mathscr{F}^*$ and sing $\mathscr{F}=\{s=0\}$

Theorem [Baum-Bott 1972]: Assume M compact. Fix $\phi \in \mathbb{C}[z_1, \ldots, z_n]$ of deg. $n - k < \ell \leq n$. Then, $\forall Z \subset sing\mathscr{F}$ connected component \exists a residue class $\operatorname{Res}^{\phi}(\mathscr{F}; Z) \in H^{2\ell}(M, \mathbb{C})$ and

$$\sum_{\mathsf{Z}\subset\mathsf{sing}\mathscr{F}}\mathsf{Res}^{\phi}(\mathscr{F};\mathsf{Z})=\phi(\mathsf{N}\mathscr{F})$$

Example.: $X \in H^0(M, TM)$ holomorphic vector field on $M \rightsquigarrow$ rank-one foliation

 $T\mathscr{F} = \mathcal{O}_{M} \cdot X$ and $N\mathscr{F} = TM/\mathcal{O}_{M} \cdot X \implies sing\mathscr{F} = \{X = 0\}$

General rank-one foliation $\longleftrightarrow s\in H^0(M,TM\otimes L)$ where $L\simeq T\mathscr{F}^*$ and sing $\mathscr{F}=\{s=0\}$

Theorem [Baum-Bott 1972]: Assume M compact. Fix $\phi \in \mathbb{C}[z_1, \ldots, z_n]$ of deg. $n - k < \ell \leq n$. Then, $\forall Z \subset sing\mathscr{F}$ connected component \exists a residue class $\operatorname{Res}^{\phi}(\mathscr{F}; Z) \in H^{2\ell}(M, \mathbb{C})$ and

$$\sum_{\mathsf{Z}\subset\mathsf{sing},\mathscr{F}}\mathsf{Res}^{\varphi}(\mathscr{F};\mathsf{Z}) = \phi(\mathsf{N}\mathscr{F})$$

Comments:

★ Res^{ϕ}(*F*; Z) depends only on the local behavior of *F* around Z

Example.: $X \in H^0(M, TM)$ holomorphic vector field on $M \rightsquigarrow$ rank-one foliation

 $\mathsf{T}\mathscr{F} = \mathfrak{O}_{\mathsf{M}} \cdot \mathsf{X} \quad \text{and} \quad \mathsf{N}\mathscr{F} = \mathsf{T}\mathsf{M}/\mathfrak{O}_{\mathsf{M}} \cdot \mathsf{X} \implies \mathsf{sing}\mathscr{F} = \{\mathsf{X} = \mathsf{0}\}$

General rank-one foliation $\longleftrightarrow s\in H^0(M,TM\otimes L)$ where $L\simeq T\mathscr{F}^*$ and sing $\mathscr{F}=\{s=0\}$

Theorem [Baum-Bott 1972]: Assume M compact. Fix $\phi \in \mathbb{C}[z_1, \ldots, z_n]$ of deg. $n - k < \ell \leq n$. Then, $\forall Z \subset sing\mathscr{F}$ connected component \exists a residue class $\operatorname{Res}^{\phi}(\mathscr{F}; Z) \in H^{2\ell}(M, \mathbb{C})$ and

$$\sum_{\mathbb{C} \in \operatorname{sing} \mathscr{F}} \operatorname{\mathsf{Res}}^{\varphi}(\mathscr{F}; \mathsf{Z}) = \varphi(\mathsf{N}\mathscr{F})$$

Comments:

- ★ Res^{ϕ}(*F*; Z) depends only on the local behavior of *F* around Z
- ★ Localization formula for $\phi(N\mathscr{F})$

Example.: $X \in H^0(M, TM)$ holomorphic vector field on $M \rightsquigarrow$ rank-one foliation

 $\mathsf{T}\mathscr{F} = \mathfrak{O}_{\mathsf{M}} \cdot \mathsf{X} \quad \text{and} \quad \mathsf{N}\mathscr{F} = \mathsf{T}\mathsf{M}/\mathfrak{O}_{\mathsf{M}} \cdot \mathsf{X} \implies \mathsf{sing}\mathscr{F} = \{\mathsf{X} = \mathsf{0}\}$

General rank-one foliation $\longleftrightarrow s\in H^0(M,TM\otimes L)$ where $L\simeq T\mathscr{F}^*$ and sing $\mathscr{F}=\{s=0\}$

Theorem [Baum-Bott 1972]: Assume M compact. Fix $\phi \in \mathbb{C}[z_1, \ldots, z_n]$ of deg. $n - k < \ell \leq n$. Then, $\forall Z \subset sing\mathscr{F}$ connected component \exists a residue class $\operatorname{Res}^{\phi}(\mathscr{F}; Z) \in H^{2\ell}(M, \mathbb{C})$ and

$$\sum_{\mathsf{Z}\subset\mathsf{sing},\mathscr{F}}\mathsf{Res}^{\varphi}(\mathscr{F};\mathsf{Z})=\varphi(\mathsf{N}\mathscr{F})$$

Comments:

- ★ Res^{ϕ}(*F*; Z) depends only on the local behavior of *F* around Z
- ★ Localization formula for $\phi(N𝔅)$
- Consequence of vanishing theorem

Naive "proof" of BB Theorem:

Naive "proof" of BB Theorem: only local behaviour around Z matters

The "proof"

Naive "proof" of BB Theorem: only local behaviour around Z matters

Foliation is regular on $M \setminus Z$. Take a basic connection $D^{M \setminus Z}$ on $N \mathscr{F}|_{M \setminus Z}$
Naive "proof" of BB Theorem: only local behaviour around Z matters Foliation is regular on $M \setminus Z$. Take a basic connection $D^{M \setminus Z}$ on $N \mathscr{F}|_{M \setminus Z}$ Glue with an arbitrary connection D^Z near Z

 \leadsto connection D on $N\mathscr{F}$

Naive "proof" of BB Theorem: only local behaviour around Z matters Foliation is regular on $M \setminus Z$. Take a basic connection $D^{M \setminus Z}$ on $N \mathscr{F}|_{M \setminus Z}$ Glue with an arbitrary connection D^Z near Z

 \leadsto connection D on $N\mathscr{F}$

By vanishing theorem, $\varphi(\Theta(D))$ is a 2\ell-form supported near Z

Naive "proof" of BB Theorem: only local behaviour around Z matters Foliation is regular on $M \setminus Z$. Take a basic connection $D^{M \setminus Z}$ on $N \mathscr{F}|_{M \setminus Z}$ Glue with an arbitrary connection D^Z near Z

 \leadsto connection D on $N\mathscr{F}$

By vanishing theorem, $\varphi(\Theta(D))$ is a 2\ell-form supported near Z

 \rightsquigarrow define $\mathsf{Res}^{\varphi}(\mathscr{F}; \mathsf{Z}) = [\varphi(\mathsf{D})] \in \mathsf{H}^{2\ell}(\mathsf{M}, \mathbb{C})$

Naive "proof" of BB Theorem: only local behaviour around Z matters Foliation is regular on $M \setminus Z$. Take a basic connection $D^{M \setminus Z}$ on $N \mathscr{F}|_{M \setminus Z}$ Glue with an arbitrary connection D^Z near Z

 \leadsto connection D on $N\mathscr{F}$

By vanishing theorem, $\varphi(\Theta(D))$ is a 2 ℓ -form supported near Z \rightsquigarrow define $\operatorname{Res}^{\varphi}(\mathscr{F}; Z) = [\varphi(D)] \in H^{2\ell}(M, \mathbb{C})$

Problem: Cannot define connections on the singular sheaf $N\mathscr{F}$

Naive "proof" of BB Theorem: only local behaviour around Z matters Foliation is regular on $M \setminus Z$. Take a basic connection $D^{M \setminus Z}$ on $N \mathscr{F}|_{M \setminus Z}$ Glue with an arbitrary connection D^Z near Z

 \leadsto connection D on N ${\mathscr F}$

By vanishing theorem, $\varphi(\Theta(D))$ is a 2 ℓ -form supported near Z \rightsquigarrow define $\operatorname{Res}^{\varphi}(\mathscr{F}; Z) = [\varphi(D)] \in H^{2\ell}(M, \mathbb{C})$

Problem: Cannot define connections on the singular sheaf N \mathscr{F}

Solution: Work with resolutions of NF

$$0 \rightarrow E_N \longrightarrow E_{N-1} \longrightarrow \cdots \longrightarrow E_1 \longrightarrow E_0 \longrightarrow N \mathscr{F} \rightarrow 0$$

Naive "proof" of BB Theorem: only local behaviour around Z matters Foliation is regular on $M \setminus Z$. Take a basic connection $D^{M \setminus Z}$ on $N \mathscr{F}|_{M \setminus Z}$ Glue with an arbitrary connection D^Z near Z

 \leadsto connection D on $N\mathscr{F}$

By vanishing theorem, $\phi(\Theta(D))$ is a 2 ℓ -form supported near Z \rightsquigarrow define $\operatorname{Res}^{\phi}(\mathscr{F}; Z) = [\phi(D)] \in H^{2\ell}(M, \mathbb{C})$

Problem: Cannot define connections on the singular sheaf N ${\mathscr F}$

Solution: Work with resolutions of $N\mathscr{F}$

$$0 \to E_N \longrightarrow E_{N-1} \longrightarrow \cdots \longrightarrow E_1 \longrightarrow E_0 \longrightarrow N \mathscr{F} \to 0$$

Then

$$c(N\mathscr{F}) \mathrel{\mathop:}= c\left(\sum_{\mathfrak{i}=0}^{N} (-1)^{\mathfrak{i}} \mathsf{E}_{\mathfrak{i}}\right) = \prod_{\mathfrak{i}=0}^{N} c(\mathsf{E}_{\mathfrak{i}})^{(-1)^{\mathfrak{i}}}$$

and similarly for Chern forms

 $\textbf{Recall: } \mathsf{Res}^{\varphi}(\mathscr{F};\mathsf{Z}) \in \mathsf{H}^{2\ell}(\mathsf{M},\mathbb{C}) \textbf{ such that } \sum_{\mathsf{Z} \subset \mathsf{sing},\mathscr{F}} \mathsf{Res}^{\varphi}(\mathscr{F};\mathsf{Z}) = \varphi(\mathsf{N}\mathscr{F})$

Fundamental question: How to compute/represent $\text{Res}^{\Phi}(\mathscr{F}; Z)$?

Recall: $\operatorname{Res}^{\varphi}(\mathscr{F}; \mathsf{Z}) \in \operatorname{H}^{2\ell}(\mathsf{M}, \mathbb{C})$ such that $\sum_{\mathsf{Z} \subset \operatorname{sing}\mathscr{F}} \operatorname{Res}^{\varphi}(\mathscr{F}; \mathsf{Z}) = \varphi(\mathsf{N}\mathscr{F})$

Fundamental question: How to compute/represent $\text{Res}^{\Phi}(\mathscr{F}; Z)$?

Particular case: ${\mathscr F}$ of rank-one and isolated singularities

Recall: $\operatorname{Res}^{\varphi}(\mathscr{F}; Z) \in H^{2\ell}(M, \mathbb{C})$ such that $\sum_{Z \subset \operatorname{sing}\mathscr{F}} \operatorname{Res}^{\varphi}(\mathscr{F}; Z) = \varphi(N\mathscr{F})$

Fundamental question: How to compute/represent $\text{Res}^{\Phi}(\mathscr{F}; Z)$?

Particular case: F of rank-one and isolated singularities

Around $p \in sing \mathscr{F}$, $T\mathscr{F}$ locally generated by $X = \sum a_j(z) \frac{\partial}{\partial z_j}$ with $\{a_1 = \cdots = a_n = 0\} = \{0\}.$

 $\label{eq:Recall: Res} \ensuremath{\mathsf{Res}}^\varphi(\mathscr{F};\mathsf{Z})\in H^{2\ell}(\mathsf{M},\mathbb{C}) \mbox{ such } \mbox{that } \sum_{\mathsf{Z}\subset sing\mathscr{F}} \ensuremath{\mathsf{Res}}^\varphi(\mathscr{F};\mathsf{Z}) = \varphi(\mathsf{N}\mathscr{F})$

Fundamental question: How to compute/represent $\text{Res}^{\Phi}(\mathscr{F}; Z)$?

Particular case: \mathscr{F} of rank-one and isolated singularities

Around $p \in \operatorname{sing} \mathscr{F}$, $T\mathscr{F}$ locally generated by $X = \sum a_j(z) \frac{\partial}{\partial z_j}$ with $\{a_1 = \cdots = a_n = 0\} = \{0\}$. Then,

$$\mathsf{Res}^{\Phi}(\mathscr{F}; \mathfrak{p}) = \left(\frac{\sqrt{-1}}{2\pi}\right)^n \int_{|\mathfrak{a}_1| = \varepsilon, \dots, |\mathfrak{a}_n| = \varepsilon} \Phi\left(\left(\frac{\partial \mathfrak{a}_i}{\partial z_j}\right)_{i, j}\right) \frac{dz_1 \wedge \dots \wedge dz_n}{\mathfrak{a}_1 \cdots \mathfrak{a}_n}$$

(Grothendieck residue)

 $\textbf{Recall: } \mathsf{Res}^{\varphi}(\mathscr{F};\mathsf{Z}) \in H^{2\ell}(M,\mathbb{C}) \textbf{ such that } \sum_{\mathsf{Z} \subset \mathsf{sing}\mathscr{F}} \mathsf{Res}^{\varphi}(\mathscr{F};\mathsf{Z}) = \varphi(N\mathscr{F})$

Fundamental question: How to compute/represent $\text{Res}^{\Phi}(\mathscr{F}; Z)$?

Particular case: \mathscr{F} of rank-one and isolated singularities

Around $p \in \operatorname{sing} \mathscr{F}$, $T\mathscr{F}$ locally generated by $X = \sum a_j(z) \frac{\partial}{\partial z_j}$ with $\{a_1 = \cdots = a_n = 0\} = \{0\}$. Then,

$$\mathsf{Res}^{\Phi}(\mathscr{F}; \mathfrak{p}) = \left(\frac{\sqrt{-1}}{2\pi}\right)^n \int_{|\mathfrak{a}_1|=\varepsilon, \dots, |\mathfrak{a}_n|=\varepsilon} \varphi\left(\left(\frac{\partial \mathfrak{a}_i}{\partial z_j}\right)_{i,j}\right) \frac{dz_1 \wedge \dots \wedge dz_n}{\mathfrak{a}_1 \cdots \mathfrak{a}_n}$$

(Grothendieck residue)

All known cases rely on a reduction to the above situation

 $\textbf{Recall:} \ \textbf{Res}^{\varphi}(\mathscr{F}; \textbf{Z}) \in H^{2\ell}(M, \mathbb{C}) \ \textbf{such that} \ \sum_{\textbf{Z} \subset \textbf{sing}, \mathscr{F}} \textbf{Res}^{\varphi}(\mathscr{F}; \textbf{Z}) = \varphi(N\mathscr{F})$

Fundamental question: How to compute/represent $\text{Res}^{\Phi}(\mathscr{F}; Z)$?

Particular case: ${\mathscr F}$ of rank-one and isolated singularities

Around $p \in \operatorname{sing} \mathscr{F}$, $T\mathscr{F}$ locally generated by $X = \sum a_j(z) \frac{\partial}{\partial z_j}$ with $\{a_1 = \cdots = a_n = 0\} = \{0\}$. Then,

$$\operatorname{Res}^{\phi}(\mathscr{F}; \mathfrak{p}) = \left(\frac{\sqrt{-1}}{2\pi}\right)^{n} \int_{|a_{1}|=\varepsilon, \dots, |a_{n}|=\varepsilon} \varphi\left(\left(\frac{\partial a_{i}}{\partial z_{j}}\right)_{i, j}\right) \frac{dz_{1} \wedge \dots \wedge dz_{n}}{a_{1} \cdots a_{n}}$$
(Grothendieck reside

All known cases rely on a reduction to the above situation

* When deg $\varphi = n - k + 1$, can slice \mathscr{F} by transversal disk on which \mathscr{F} induces rank-one foliation with isolated singularities [BB72, Corrêa-Lourenço 2019]

ue)

 $\textbf{Recall: } \mathsf{Res}^{\varphi}(\mathscr{F};\mathsf{Z}) \in \mathsf{H}^{2\ell}(\mathsf{M},\mathbb{C}) \textbf{ such that } \sum_{\mathsf{Z} \subset \mathsf{sing}\mathscr{F}} \mathsf{Res}^{\varphi}(\mathscr{F};\mathsf{Z}) = \varphi(\mathsf{N}\mathscr{F})$

Fundamental question: How to compute/represent $\text{Res}^{\Phi}(\mathscr{F}; Z)$?

Particular case: ${\mathscr F}$ of rank-one and isolated singularities

Around $p \in \text{sing}\mathscr{F}$, $T\mathscr{F}$ locally generated by $X = \sum a_j(z) \frac{\partial}{\partial z_j}$ with $\{a_1 = \cdots = a_n = 0\} = \{0\}$. Then,

$$\mathsf{Res}^{\Phi}(\mathscr{F}; \mathfrak{p}) = \left(\frac{\sqrt{-1}}{2\pi}\right)^n \int_{|\mathfrak{a}_1|=\varepsilon, \dots, |\mathfrak{a}_n|=\varepsilon} \varphi\left(\left(\frac{\partial \mathfrak{a}_i}{\partial z_j}\right)_{i,j}\right) \frac{dz_1 \wedge \dots \wedge dz_n}{\mathfrak{a}_1 \cdots \mathfrak{a}_n}$$

(Grothendieck residue)

All known cases rely on a reduction to the above situation

 $\star \quad \mbox{When deg ϕ = $n-k+1$, can slice \mathscr{F} by transversal disk on which \mathscr{F} induces rank-one foliation with isolated singularities [BB72, Corrêa-Lourenço 2019]}$

* When \mathscr{F} is rank-one with non-isolated sing., can deform \mathscr{F} and use the above formula. Residues vary continuously [Bracci-Suwa 2015]

Theorem [K. –Lärkäng–Wulcan]: Assume M projective. Fix $\phi \in \mathbb{C}[z_1, \dots, z_n]$ of deg. $n - k < \ell \leq n$.

Theorem [K. –Lärkäng–Wulcan]: Assume M projective. Fix $\phi \in \mathbb{C}[z_1, \ldots, z_n]$ of deg. $n - k < \ell \leq n$. Then, $\forall Z \subset sing\mathscr{F}$ connected component \exists a pseudomeromorphic current R_Z^{ϕ} of degree 2ℓ such that

Theorem [K. –Lärkäng–Wulcan]: Assume M projective. Fix $\phi \in \mathbb{C}[z_1, \ldots, z_n]$ of deg. $n - k < \ell \leq n$. Then, $\forall Z \subset sing\mathscr{F}$ connected component \exists a pseudomeromorphic current R_Z^{ϕ} of degree 2ℓ such that

• R^{Φ}_{Z} depends only on the local behavior of ${\mathscr F}$ around Z

Theorem [K. –Lärkäng–Wulcan]: Assume M projective. Fix $\phi \in \mathbb{C}[z_1, \ldots, z_n]$ of deg. $n - k < \ell \leq n$. Then, $\forall Z \subset sing\mathscr{F}$ connected component \exists a pseudomeromorphic current R_Z^{ϕ} of degree 2ℓ such that

- R^{φ}_Z depends only on the local behavior of ${\mathscr F}$ around Z
- supp $R^{\Phi}_Z \subset Z$

Theorem [K. –Lärkäng–Wulcan]: Assume M projective. Fix $\phi \in \mathbb{C}[z_1, \ldots, z_n]$ of deg. $n - k < \ell \leq n$. Then, $\forall Z \subset sing\mathscr{F}$ connected component \exists a pseudomeromorphic current R_Z^{ϕ} of degree 2ℓ such that

- R^{Φ}_{Z} depends only on the local behavior of ${\mathscr F}$ around Z
- supp $\mathsf{R}^{\varphi}_{\mathsf{Z}} \subset \mathsf{Z}$
- R^{Φ}_{Z} represents BB class: $[R^{\Phi}_{Z}] = \text{Res}^{\Phi}(\mathscr{F}; Z) \in H^{2\ell}(M, \mathbb{C})$

Theorem [K. –Lärkäng–Wulcan]: Assume M projective. Fix $\phi \in \mathbb{C}[z_1, \ldots, z_n]$ of deg. $n - k < \ell \leq n$. Then, $\forall Z \subset sing\mathscr{F}$ connected component \exists a pseudomeromorphic current R_Z^{ϕ} of degree 2ℓ such that

- R^{Φ}_{Z} depends only on the local behavior of ${\mathscr F}$ around Z
- supp $\mathsf{R}^{\Phi}_{\mathsf{Z}} \subset \mathsf{Z}$
- R^{Φ}_{Z} represents BB class: $[R^{\Phi}_{Z}] = \text{Res}^{\Phi}(\mathscr{F}; Z) \in H^{2\ell}(M, \mathbb{C})$

Currents = dual to differential forms = singular versions of smooth forms

Theorem [K. –Lärkäng–Wulcan]: Assume M projective. Fix $\phi \in \mathbb{C}[z_1, \ldots, z_n]$ of deg. $n - k < \ell \leq n$. Then, $\forall Z \subset sing\mathscr{F}$ connected component \exists a pseudomeromorphic current R_Z^{φ} of degree 2ℓ such that

- R^{Φ}_{Z} depends only on the local behavior of ${\mathscr F}$ around Z
- supp $\mathsf{R}^{\Phi}_{\mathsf{Z}} \subset \mathsf{Z}$
- R^{Φ}_{Z} represents BB class: $[R^{\Phi}_{Z}] = \text{Res}^{\Phi}(\mathscr{F}; Z) \in H^{2\ell}(M, \mathbb{C})$

Currents = dual to differential forms = singular versions of smooth forms

* Currents can be supported by analytic subvarieties

Theorem [K. –Lärkäng–Wulcan]: Assume M projective. Fix $\phi \in \mathbb{C}[z_1, \ldots, z_n]$ of deg. $n - k < \ell \leq n$. Then, $\forall Z \subset sing\mathscr{F}$ connected component \exists a pseudomeromorphic current R^{Φ}_Z of degree 2ℓ such that

- R^{Φ}_{Z} depends only on the local behavior of ${\mathscr F}$ around Z
- supp $\mathsf{R}^{\Phi}_{\mathsf{Z}} \subset \mathsf{Z}$
- R^{Φ}_{Z} represents BB class: $[R^{\Phi}_{Z}] = \text{Res}^{\Phi}(\mathscr{F}; Z) \in H^{2\ell}(M, \mathbb{C})$

Currents = dual to differential forms = singular versions of smooth forms

* Currents can be supported by analytic subvarieties

Example.: f hol. function $\rightsquigarrow 1/f$ principal value current

$$\Big\langle \frac{1}{f},\xi \Big\rangle := \lim_{\varepsilon \to 0} \int_{|f|^2 > \varepsilon} \frac{\xi}{f}, \quad \xi \text{ a test } 2n - \text{form}$$

Theorem [K. –Lärkäng–Wulcan]: Assume M projective. Fix $\phi \in \mathbb{C}[z_1, \ldots, z_n]$ of deg. $n - k < \ell \leq n$. Then, $\forall Z \subset sing\mathscr{F}$ connected component \exists a pseudomeromorphic current R_Z^{Φ} of degree 2ℓ such that

- R^{Φ}_{Z} depends only on the local behavior of ${\mathscr F}$ around Z
- supp $R^{\varphi}_Z \subset Z$
- R^{Φ}_{Z} represents BB class: $[R^{\Phi}_{Z}] = \text{Res}^{\Phi}(\mathscr{F}; Z) \in H^{2\ell}(M, \mathbb{C})$

Currents = dual to differential forms = singular versions of smooth forms

* Currents can be supported by analytic subvarieties

Example.: f hol. function $\rightsquigarrow 1/f$ principal value current

$$\Big\langle \frac{1}{f},\xi \Big\rangle := \lim_{\varepsilon \to 0} \int_{|f|^2 > \varepsilon} \frac{\xi}{f}, \quad \xi \text{ a test } 2n - \text{form}$$

Residue current: $\overline{\partial}(1/f)$ defined by

$$\left\langle \overline{\eth} rac{1}{f},\eta
ight
angle := \left\langle rac{1}{f},\overline{\eth}\eta
ight
angle, \quad \eta \text{ a test } (2n-1) - \mathsf{form}$$

Theorem [K. –Lärkäng–Wulcan]: Assume M projective. Fix $\phi \in \mathbb{C}[z_1, \ldots, z_n]$ of deg. $n - k < \ell \leq n$. Then, $\forall Z \subset sing\mathscr{F}$ connected component \exists a pseudomeromorphic current R_Z^{Φ} of degree 2ℓ such that

- R^{Φ}_{Z} depends only on the local behavior of ${\mathscr F}$ around Z
- supp $R^{\varphi}_Z \subset Z$
- R^{Φ}_{Z} represents BB class: $[R^{\Phi}_{Z}] = \text{Res}^{\Phi}(\mathscr{F}; Z) \in H^{2\ell}(M, \mathbb{C})$

Currents = dual to differential forms = singular versions of smooth forms

* Currents can be supported by analytic subvarieties

Example.: f hol. function $\rightsquigarrow 1/f$ principal value current

$$\Big\langle \frac{1}{f},\xi \Big\rangle := \lim_{\varepsilon \to 0} \int_{|f|^2 > \varepsilon} \frac{\xi}{f}, \quad \xi \text{ a test } 2n - \text{form}$$

Residue current: $\overline{\partial}(1/f)$ defined by

$$\left\langle \overline{\eth} rac{1}{f},\eta
ight
angle := \left\langle rac{1}{f},\overline{\eth}\eta
ight
angle, \quad \eta ext{ a test } (2n-1) - ext{form}$$

Remark: supp $\overline{\partial}(1/f) \subset \{f = 0\}$

For simplicity, assume Z is the only singular component of ${\mathscr F}$

For simplicity, assume Z is the only singular component of \mathscr{F} Start with a resolution by locally free sheaves

$$0 \to E_N \xrightarrow{\phi_N} E_{N-1} \xrightarrow{\phi_{N-1}} \dots \xrightarrow{\phi_2} E_1 \xrightarrow{\phi_1} E_0 = TM \xrightarrow{\phi_0} N\mathscr{F} \to 0, \qquad (1)$$

 $\phi_0: TM \to N\mathscr{F}$ canonical projection and associated complex of vector bundles is exact outside Z.

For simplicity, assume Z is the only singular component of \mathscr{F} Start with a resolution by locally free sheaves

$$0 \to E_N \xrightarrow{\phi_N} E_{N-1} \xrightarrow{\phi_{N-1}} \ldots \xrightarrow{\phi_2} E_1 \xrightarrow{\phi_1} E_0 = TM \xrightarrow{\phi_0} N \mathscr{F} \to 0, \qquad (1)$$

 $\phi_0:TM\to N\mathscr{F}$ canonical projection and associated complex of vector bundles is exact outside Z.

 \star take a "good" basic connection D_{basic} on $N\mathscr{F}|_{M\setminus Z}$

For simplicity, assume Z is the only singular component of \mathscr{F} Start with a resolution by locally free sheaves

$$0 \to E_N \xrightarrow{\phi_N} E_{N-1} \xrightarrow{\phi_{N-1}} \dots \xrightarrow{\phi_2} E_1 \xrightarrow{\phi_1} E_0 = TM \xrightarrow{\phi_0} N \mathscr{F} \to 0, \qquad (1)$$

 $\phi_0:TM\to N\mathscr{F}$ canonical projection and associated complex of vector bundles is exact outside Z.

 \star take a "good" basic connection D_{basic} on $N\mathscr{F}|_{M\setminus Z}$

 \star using "good" inverses of φ_k define connections \widetilde{D}_k on $E_k|_{M\setminus Z}$ compatible with the complex (1)

 $\widetilde{D}_{k-1} \circ \varphi_k = \varphi_k \circ \widetilde{D}_k$

For simplicity, assume Z is the only singular component of \mathscr{F} Start with a resolution by locally free sheaves

$$0 \to E_N \xrightarrow{\phi_N} E_{N-1} \xrightarrow{\phi_{N-1}} \dots \xrightarrow{\phi_2} E_1 \xrightarrow{\phi_1} E_0 = TM \xrightarrow{\phi_0} N\mathscr{F} \to 0, \qquad (1)$$

 $\phi_0:TM\to N\mathscr{F}$ canonical projection and associated complex of vector bundles is exact outside Z.

 $\star~$ take a "good" basic connection D_{basic} on $N\mathscr{F}|_{M\setminus Z}$

 \star using "good" inverses of φ_k define connections \widetilde{D}_k on $E_k|_{M\setminus Z}$ compatible with the complex (1)

★ Cut-off procedure: $Z \subset \{s = 0\}$ for some $s \in H^0(M, \mathcal{E})$, \mathcal{E} hol. v.b.

For simplicity, assume Z is the only singular component of \mathscr{F} Start with a resolution by locally free sheaves

$$0 \to E_N \xrightarrow{\phi_N} E_{N-1} \xrightarrow{\phi_{N-1}} \dots \xrightarrow{\phi_2} E_1 \xrightarrow{\phi_1} E_0 = TM \xrightarrow{\phi_0} N\mathscr{F} \to 0, \qquad (1)$$

 $\phi_0:TM\to N\mathscr{F}$ canonical projection and associated complex of vector bundles is exact outside Z.

 \star take a "good" basic connection D_{basic} on $N\mathscr{F}|_{M\setminus Z}$

 \star using "good" inverses of φ_k define connections \widetilde{D}_k on $E_k|_{M\setminus Z}$ compatible with the complex (1)

★ Cut-off procedure: $Z \subset \{s = 0\}$ for some $s \in H^0(M, \mathcal{E})$, \mathcal{E} hol. v.b.

$$\widehat{D}_{k}^{\varepsilon} = (1 - \chi(|s|^{2}/\varepsilon))D_{k} + \chi(|s|^{2}/\varepsilon)\widetilde{D}_{k},$$

where $\chi \sim \mathbf{1}_{[1,+\infty]}$ and D_k auxiliary connection $\overbrace{\mathbf{V}_{\mathbf{k}}}^{\mathbf{v}}$

★ By Chern-Weil $c_j(N\mathscr{F})$ represented by

$$\begin{split} \prod_{k=0}^{N} \left(\mathsf{det}\left[I + \frac{i}{2\pi} \Theta(\widehat{D}_{k}^{\varepsilon}) \right] \right)^{(-1)^{k}} &= 1 + \sigma_{1}(\Theta(\widehat{D}_{N}^{\varepsilon})| \dots |\Theta(\widehat{D}_{0}^{\varepsilon})) \\ &+ \dots + \sigma_{n}(\Theta(\widehat{D}_{N}^{\varepsilon})| \dots |\Theta(\widehat{D}_{0}^{\varepsilon})). \end{split}$$

* By Chern-Weil $c_j(N\mathscr{F})$ represented by

$$\begin{split} \prod_{k=0}^N \left(\mathsf{det}\left[I + \frac{i}{2\pi} \Theta(\widehat{D}_k^\varepsilon)\right] \right)^{(-1)^k} &= 1 + \sigma_1(\Theta(\widehat{D}_N^\varepsilon)| \dots |\Theta(\widehat{D}_0^\varepsilon)) \\ &+ \dots + \sigma_n(\Theta(\widehat{D}_N^\varepsilon)| \dots |\Theta(\widehat{D}_0^\varepsilon)), \end{split}$$

 $\begin{array}{ll} \star & \mbox{Over } \{|s|^2 > \varepsilon\}, \ \widehat{D}_k^\varepsilon = \widetilde{D}_k \ \mbox{compatible with the exact complex, so} \\ & \varphi(\Theta(\widehat{D}_N^\varepsilon)| \ldots |\Theta(\widehat{D}_0^\varepsilon)) = \varphi(\Theta(D_{\text{basic}})) = 0 \quad \mbox{on} \quad \{|s|^2 > \varepsilon\} \\ \mbox{and BB define $\mathsf{Res}^{\varphi}(\mathscr{F}; \mathsf{Z})$ as the class of} \end{array}$

 $r^\varphi_Z(\varepsilon) = \varphi(\Theta(\widehat{D}^\varepsilon_N)| \dots |\Theta(\widehat{D}^\varepsilon_0))$

★ By Chern-Weil $c_j(N\mathscr{F})$ represented by

$$\begin{split} \prod_{k=0}^N \left(\mathsf{det}\left[I + \frac{i}{2\pi} \Theta(\widehat{D}_k^\varepsilon)\right] \right)^{(-1)^k} &= 1 + \sigma_1(\Theta(\widehat{D}_N^\varepsilon)| \dots |\Theta(\widehat{D}_0^\varepsilon)) \\ &+ \dots + \sigma_n(\Theta(\widehat{D}_N^\varepsilon)| \dots |\Theta(\widehat{D}_0^\varepsilon)), \end{split}$$

 $\label{eq:comparison} \begin{array}{ll} \star & \mbox{Over } \{|s|^2 > \varepsilon\}, \ \widehat{D}_k^\varepsilon = \widetilde{D}_k \ \mbox{compatible with the exact complex, so} \\ & \varphi(\Theta(\widehat{D}_N^\varepsilon)| \dots |\Theta(\widehat{D}_0^\varepsilon)) = \varphi(\Theta(D_{\mathfrak{basic}})) = 0 \quad \mbox{on} \quad \{|s|^2 > \varepsilon\} \\ \mbox{and BB define $\mathsf{Res}^\varphi(\mathscr{F}; \mathsf{Z})$ as the class of} \\ & r_{\mathsf{Z}}^\varphi(\varepsilon) = \varphi(\Theta(\widehat{D}_N^\varepsilon)| \dots |\Theta(\widehat{D}_0^\varepsilon)) \\ \end{array}$

Main question: Does $\lim_{\varepsilon \to 0} r_Z^{\varphi}(\varepsilon)$ exist ?

★ By Chern-Weil $c_j(N\mathscr{F})$ represented by

$$\begin{split} \prod_{k=0}^N \left(\mathsf{det}\left[I + \frac{i}{2\pi} \Theta(\widehat{D}_k^\varepsilon)\right] \right)^{(-1)^k} &= 1 + \sigma_1(\Theta(\widehat{D}_N^\varepsilon)| \dots |\Theta(\widehat{D}_0^\varepsilon)) \\ &+ \dots + \sigma_n(\Theta(\widehat{D}_N^\varepsilon)| \dots |\Theta(\widehat{D}_0^\varepsilon)), \end{split}$$

 $\begin{array}{ll} \star & \mbox{Over } \{|s|^2 > \varepsilon\}, \ \widehat{D}_k^\varepsilon = \widetilde{D}_k \ \mbox{compatible with the exact complex, so} \\ & \varphi(\Theta(\widehat{D}_N^\varepsilon)| \dots |\Theta(\widehat{D}_0^\varepsilon)) = \varphi(\Theta(D_{basic})) = 0 \quad \mbox{on} \quad \{|s|^2 > \varepsilon\} \\ & \mbox{and BB define $\operatorname{Res}^\varphi(\mathscr{F}; \mathsf{Z})$ as the class of} \\ & \quad r_{\mathsf{Z}}^\varphi(\varepsilon) = \varphi(\Theta(\widehat{D}_N^\varepsilon)| \dots |\Theta(\widehat{D}_0^\varepsilon)) \end{array}$

Main question: Does $\lim_{\varepsilon \to 0} r_Z^{\varphi}(\varepsilon)$ exist ?

Proposition [KLW]: If connections have "good" singularities, then

$$\mathsf{R}^{\varphi}_{\mathsf{Z}} = \lim_{\varepsilon \to 0} \mathsf{r}^{\varphi}_{\mathsf{Z}}(\varepsilon)$$

is a well defined current.

Good connections

Recall: resolution by locally free sheaves

 $0 \to E_N \xrightarrow{\phi_N} E_{N-1} \xrightarrow{\phi_{N-1}} \ldots \xrightarrow{\phi_2} E_1 \xrightarrow{\phi_1} E_0 = TM \xrightarrow{\phi_0} N \mathscr{F} \to 0$

and associated complex of vector bundles is exact outside Z.

Good connections

and associated complex of vector bundles is exact outside Z.

Equip E_k, k = 0, ..., N with herm. metrics \rightsquigarrow minimal inverses $\sigma_k : E_{k-1} \rightarrow E_k$

Good connections

Recall: resolution by locally free sheaves

 $0 \to E_N \xrightarrow{\phi_N} E_{N-1} \xrightarrow{\phi_{N-1}} \dots \xrightarrow{\phi_2} E_1 \xrightarrow{\phi_1} E_0 = TM \xrightarrow{\phi_0} N\mathscr{F} \to 0$

and associated complex of vector bundles is exact outside Z.

Equip E_k, k = 0, ..., N with herm. metrics \rightsquigarrow minimal inverses $\sigma_k : E_{k-1} \rightarrow E_k$

 $\phi_k\sigma_k\phi_k=\phi_k,\quad \text{Im }\sigma_k\perp\text{Im }\phi_{k+1}\quad\text{and}\quad\sigma_{k+1}\sigma_k=0.$
Recall: resolution by locally free sheaves

 $0 \to E_N \xrightarrow{\phi_N} E_{N-1} \xrightarrow{\phi_{N-1}} \dots \xrightarrow{\phi_2} E_1 \xrightarrow{\phi_1} E_0 = TM \xrightarrow{\phi_0} N \mathscr{F} \to 0$

and associated complex of vector bundles is exact outside Z.

Equip E_k , $k=0,\ldots,N$ with herm. metrics \rightsquigarrow minimal inverses $\sigma_k:\mathsf{E}_{k-1}\to\mathsf{E}_k$

 $\phi_k\sigma_k\phi_k=\phi_k,\quad \text{Im }\sigma_k\perp\text{Im }\phi_{k+1}\quad\text{and}\quad\sigma_{k+1}\sigma_k=0.$

Main property: $\sigma_{\mathbf{k}}$ is smooth outside of Z and have almost semi-meromorphic singularities along Z

Recall: resolution by locally free sheaves

 $0 \to E_N \xrightarrow{\phi_N} E_{N-1} \xrightarrow{\phi_{N-1}} \ldots \xrightarrow{\phi_2} E_1 \xrightarrow{\phi_1} E_0 = TM \xrightarrow{\phi_0} N\mathscr{F} \to 0$

and associated complex of vector bundles is exact outside Z.

Equip E_k , $k=0,\ldots,N$ with herm. metrics \rightsquigarrow minimal inverses $\sigma_k:\mathsf{E}_{k-1}\to\mathsf{E}_k$

 $\phi_k \sigma_k \phi_k = \phi_k, \quad \text{Im } \sigma_k \perp \text{Im } \phi_{k+1} \quad \text{and} \quad \sigma_{k+1} \sigma_k = 0.$

Main property: $\sigma_{\mathbf{k}}$ is smooth outside of Z and have almost semi-meromorphic singularities along Z

Example: $\varphi : \mathcal{O}_M^{\oplus r} \to \mathcal{O}_M$ mult. by $(f_1, \ldots, f_r)^T$, then $\sigma : g \mapsto (\frac{\overline{f_1 g}}{|f|^2}, \ldots, \frac{\overline{f_r g}}{|f|^2})$

Recall: resolution by locally free sheaves

 $0 \to E_N \xrightarrow{\phi_N} E_{N-1} \xrightarrow{\phi_{N-1}} \dots \xrightarrow{\phi_2} E_1 \xrightarrow{\phi_1} E_0 = TM \xrightarrow{\phi_0} N\mathscr{F} \to 0$

and associated complex of vector bundles is exact outside Z.

Equip E_k , $k=0,\ldots,N$ with herm. metrics \rightsquigarrow minimal inverses $\sigma_k:\mathsf{E}_{k-1}\to\mathsf{E}_k$

 $\phi_k \sigma_k \phi_k = \phi_k, \quad \text{Im } \sigma_k \perp \text{Im } \phi_{k+1} \quad \text{and} \quad \sigma_{k+1} \sigma_k = 0.$

Main property: $\sigma_{\mathbf{k}}$ is smooth outside of Z and have almost semi-meromorphic singularities along Z

Example: $\varphi : \mathcal{O}_M^{\oplus r} \to \mathcal{O}_M$ mult. by $(f_1, \ldots, f_r)^T$, then $\sigma : g \mapsto (\frac{\overline{f_1}g}{|f|^2}, \ldots, \frac{\overline{f_r}g}{|f|^2})$

 $\label{eq:proposition_relation} \begin{array}{l} \mbox{Proposition_KLW}: \mbox{ There is a basic connection on } N \ensuremath{\mathscr{F}} \mbox{ over } M \setminus Z \mbox{ having almost semi-meromorphic singularities along } Z \end{array}$

Recall: resolution by locally free sheaves

 $0 \to E_N \xrightarrow{\phi_N} E_{N-1} \xrightarrow{\phi_{N-1}} \ldots \xrightarrow{\phi_2} E_1 \xrightarrow{\phi_1} E_0 = TM \xrightarrow{\phi_0} N\mathscr{F} \to 0$

and associated complex of vector bundles is exact outside Z.

Equip E_k , $k=0,\ldots,N$ with herm. metrics \rightsquigarrow minimal inverses $\sigma_k:\mathsf{E}_{k-1}\to\mathsf{E}_k$

 $\phi_k \sigma_k \phi_k = \phi_k, \quad \text{Im } \sigma_k \perp \text{Im } \phi_{k+1} \quad \text{and} \quad \sigma_{k+1} \sigma_k = 0.$

Main property: $\sigma_{\mathbf{k}}$ is smooth outside of Z and have almost semi-meromorphic singularities along Z

Example:
$$\varphi : \mathbb{O}_{M}^{\oplus r} \to \mathbb{O}_{M}$$
 mult. by $(f_{1}, \dots, f_{r})^{\mathsf{T}}$, then $\sigma : g \mapsto (\frac{\overline{f_{1}g}}{|f|^{2}}, \dots, \frac{\overline{f_{r}g}}{|f|^{2}})$

 $\label{eq:proposition_relation} \begin{array}{l} \mbox{Proposition_KLW}: \mbox{ There is a basic connection on } N \ensuremath{\mathscr{F}} \ \mbox{over } M \setminus Z \ \mbox{having almost semi-meromorphic singularities along } Z \end{array}$

 $\mathbf{D}_{0} := \mathbf{D}^{\mathsf{T}\mathsf{M}} - (\mathfrak{D}\varphi_{1})\,\sigma_{1}(\mathbf{d}z \cdot \partial/\partial z)$

and

$$\mathsf{D}_{\texttt{basic}}(\varphi_0 \nu) \coloneqq - \varphi_0 \mathsf{D}_0(\pi_0 \nu)$$
,

where $\pi_0 = I - \phi_1 \sigma_1$ orthogonal proj. from TM onto $(Im\phi_1)^{\perp} = (T\mathscr{F})^{\perp}$

$$\widetilde{D}_{k-1} \circ \varphi_k = \varphi_k \circ \widetilde{D}_k$$

Gluing

$$\widehat{D}_k^{\varepsilon} = (1 - \chi(|s|^2/\varepsilon))D_k + \chi(|s|^2/\varepsilon)\widetilde{D}_k.$$

Gluing

$$\widehat{D}_k^\varepsilon = (1 - \chi(|s|^2/\varepsilon))D_k + \chi(|s|^2/\varepsilon)\widetilde{D}_k.$$

Since singularities are nearly algebraic, can use resolutions (Hironaka etc), reduce to divisorial singularity case and prove that

$$r^{\varphi}_{Z}(\varepsilon) = \varphi(\Theta(\widehat{D}_{N}^{\varepsilon})| \dots |\Theta(\widehat{D}_{0}^{\varepsilon}))$$

has a well defined limit when $\varepsilon \to 0$

Gluing

$$\widehat{D}_k^{\varepsilon} = (1 - \chi(|s|^2/\varepsilon))D_k + \chi(|s|^2/\varepsilon)\widetilde{D}_k.$$

Since singularities are nearly algebraic, can use resolutions (Hironaka etc), reduce to divisorial singularity case and prove that

$$r^{\varphi}_{Z}(\varepsilon) = \varphi(\Theta(\widehat{D}_{N}^{\varepsilon})| \dots |\Theta(\widehat{D}_{0}^{\varepsilon}))$$

has a well defined limit when $\varepsilon \to 0$

Multivariable residue theory: Andersson, Coleff, Herrera, Lärkäng Passare, Samuelsson-Kalm, Tsikh, Wulcan, Yger, etc.

Thank you!