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A real theorem

Theorem [Poincaré-Hopf]: M: compact smooth manifold, V : vector field on
M with isolated singularities (= isolated zeroes). Then

X

p2{V=0}

indexp(V) = �(M)

? indexp(V) is a number depending only on the local behavior of V around p

“Local information around singularities add up to a global invariant”

Today: analogue for holomorphic foliations on a complex manifold

Baum-Bott Theorem, 1972
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Regular holomorphic foliations

M : complex manifold of dimension n

Regular holomorphic foliation F on M

 ! involutive holomorphic sub-bundle TF ⇢ TM

,! [TF , TF ] ⇢ TF

k:= rank of F = rank of TF

Normal bundle: NF := TM/TF = holomorphic vector bundle of rank n- k

Frobenius Theorem:
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Characteristic classes and a vanishing theorem

E!M vector bundle

� 2 C[z1, . . . , zn] homogeneous symmetric polynomial of degree 1 6 ` 6 n

�! �(E) 2 H
2`(M,C)

Chern-Weil

Ex.: � = S` the `th elementary symmetric polynomial  S`(E) = c`(E) the `th Chern class

 compute � in the curvature ⇥(D) of some connection D on E

Theorem [Baum-Bott 1972]: F regular hol. foliation on M of rank k,

NF normal bundle, � 2 C[z1, . . . , zn] of degree n- k < ` 6 n. Then

�(NF ) = 0 in H
2`(M,C).

Proof: existence of good connections on NF , compatible with both the
holomorphic and foliated structure
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Basic connections

Def.: '0 : TM! NF = TM/TF canonical projection

D connection on NF is basic if of type (1, 0) and

◆(u)D('0v) = '0[u, v], 8u 2 TF , v 2 TM

Prop: If D is basic and deg� > n- k, then �(⇥(D)) = 0

FACT: Regular foliations are rare (e.g. @ regular foliation on Pn)

Need to consider singular foliations

Def.: A (singular) hol. foliation F on M $ coherent subsheaf TF ⇢ TM

• TF is involutive [TF , TF ] ⇢ TF
• saturated, that is, normal sheaf NF = TM/TF torsion free

k = rank of F := generic rank of TF

singF := {x 2M | NFx not locally free }

Remark: codim singF > 2

5 / 14
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Baum-Bott residues

Example.: X 2 H
0(M, TM) holomorphic vector field on M  rank-one foliation

TF = OM · X and NF = TM/OM · X

=) singF = {X = 0}

General rank-one foliation  ! s 2 H
0(M, TM⌦ L) where L ' TF ⇤ and

singF = {s = 0}

Theorem [Baum-Bott 1972]: Assume M compact. Fix � 2 C[z1, . . . , zn] of
deg. n- k < ` 6 n. Then, 8Z ⇢ singF connected component 9 a residue class
Res�(F ;Z) 2 H

2`(M,C) and
X

Z⇢singF

Res�(F ;Z) = �(NF )

Comments:

? Res�(F ;Z) depends only on the local behavior of F around Z

? Localization formula for �(NF )

? Consequence of vanishing theorem
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The “proof”

Naive “proof” of BB Theorem:

only local behaviour around Z matters

Foliation is regular on M \ Z. Take a basic connection D
M\Z on NF |M\Z

Glue with an arbitrary connection D
Z near Z

 connection D on NF

By vanishing theorem, �(⇥(D)) is a 2`-form supported near Z

 define Res�(F ;Z) = [�(D)] 2 H
2`(M,C)

Problem: Cannot define connections on the singular sheaf NF

Solution: Work with resolutions of NF

0! EN �! EN-1 �! · · · �! E1 �! E0 �! NF ! 0

Then

c(NF ) := c

 
NX

i=0

(-1)iEi

!

=
NY

i=0

c(Ei)
(-1)i

and similarly for Chern forms
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Computing residues

Recall: Res�(F ;Z) 2 H
2`(M,C) such that

P
Z⇢singF Res�(F ;Z) = �(NF )

Fundamental question: How to compute/represent Res
�(F ;Z)?

Particular case: F of rank-one and isolated singularities

Around p 2 singF , TF locally generated by X =
P

aj(z)
@

@zj
with

{a1 = · · · = an = 0} = {0}. Then,

Res�(F ;p) =
⇣p-1

2⇡

⌘n Z

|a1|=",...,|an|="

�

⇣⇣
@ai

@zj

⌘

i,j

⌘
dz1 ^ . . .^ dzn

a1 · · ·an

(Grothendieck residue)

All known cases rely on a reduction to the above situation

? When deg' = n- k+ 1, can slice F by transversal disk on which F
induces rank-one foliation with isolated singularities [BB72, Corrêa-Lourenço 2019]

? When F is rank-one with non-isolated sing., can deform F and use the
above formula. Residues vary continuously [Bracci-Suwa 2015]
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? When F is rank-one with non-isolated sing., can deform F and use the
above formula. Residues vary continuously [Bracci-Suwa 2015]

8 / 14

vii.
si
'



Computing residues

Recall: Res�(F ;Z) 2 H
2`(M,C) such that

P
Z⇢singF Res�(F ;Z) = �(NF )

Fundamental question: How to compute/represent Res
�(F ;Z)?

Particular case: F of rank-one and isolated singularities

Around p 2 singF , TF locally generated by X =
P

aj(z)
@

@zj
with

{a1 = · · · = an = 0} = {0}. Then,

Res�(F ;p) =
⇣p-1

2⇡

⌘n Z

|a1|=",...,|an|="

�

⇣⇣
@ai

@zj

⌘

i,j

⌘
dz1 ^ . . .^ dzn

a1 · · ·an

(Grothendieck residue)

All known cases rely on a reduction to the above situation

? When deg' = n- k+ 1, can slice F by transversal disk on which F
induces rank-one foliation with isolated singularities [BB72, Corrêa-Lourenço 2019]
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Main result

Theorem [K. –Lärkäng–Wulcan]: Assume M projective. Fix
� 2 C[z1, . . . , zn] of deg. n- k < ` 6 n.

Then, 8Z ⇢ singF connected
component 9 a pseudomeromorphic current R�

Z of degree 2` such that

• R
�
Z depends only on the local behavior of F around Z

• supp R
�
Z ⇢ Z

• R
�
Z represents BB class: [R�

Z ] = Res�(F ;Z) 2 H
2`(M,C)

Currents = dual to di↵erential forms = singular versions of smooth forms

? Currents can be supported by analytic subvarieties

Example.: f hol. function  1/f principal value current
D1
f
, ⇠
E
:= lim

✏!0

Z

|f|2>✏

⇠

f
, ⇠ a test 2n- form

Residue current: @(1/f) defined by
D
@
1

f
,⌘
E
:=
D1
f
,@⌘
E
, ⌘ a test (2n- 1)- form

Remark: supp @(1/f) ⇢ {f = 0}
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Structure of proof

For simplicity, assume Z is the only singular component of F

Start with a resolution by locally free sheaves

0! EN
'N�! EN-1

'N-1�! . . .
'2�! E1

'1�! E0 = TM
'0�! NF ! 0, (1)

'0 : TM! NF canonical projection and associated complex of vector bundles
is exact outside Z.

? take a “good” basic connection Dbasic on NF |M\Z

? using “good” inverses of �k define connections eDk on Ek|M\Z compatible
with the complex (1)

? Cut-o↵ procedure: Z ⇢ {s = 0} for some s 2 H
0(M,E), E hol. v.b.

bD✏
k = (1- �(|s|2/✏))Dk + �(|s|2/✏)eDk,

where � ⇠ 1[1,+1] and Dk auxiliary connection
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Structure of proof

? By Chern-Weil cj(NF ) represented by

NY

k=0

⇣
det
⇥
I+

i

2⇡
⇥(bD✏

k)
⇤⌘(-1)k

= 1+ �1(⇥(bD✏
N)| . . . |⇥(bD✏

0 ))

+ · · ·+ �n(⇥(bD✏
N)| . . . |⇥(bD✏

0 )),

? Over {|s|2 > ✏}, bD✏
k = eDk compatible with the exact complex, so

�(⇥(bD✏
N)| . . . |⇥(bD✏

0 )) = �(⇥(Dbasic)) = 0 on {|s|
2
> ✏}

and BB define Res�(F ;Z) as the class of

r
�
Z(✏) = �(⇥(bD✏

N)| . . . |⇥(bD✏
0 ))

Main question: Does lim✏!0 r
�
Z(✏) exist ?

Proposition [KLW]: If connections have “good” singularities, then

R
�
Z = lim

✏!0
r
�
Z(✏)

is a well defined current.
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Good connections

Recall: resolution by locally free sheaves

0! EN
'N�! EN-1

'N-1�! . . .
'2�! E1

'1�! E0 = TM
'0�! NF ! 0

and associated complex of vector bundles is exact outside Z.

Equip Ek, k = 0, . . . ,N with herm. metrics  minimal inverses �k : Ek-1 ! Ek

'k�k'k = 'k, Im �k ? Im 'k+1 and �k+1�k = 0.

Main property: �k is smooth outside of Z and have almost semi-meromorphic
singularities along Z

Example: ' : O�r
M ! OM mult. by (f1, . . . , fr)T , then � : g 7! ( f1g

|f|2
, . . . , frg

|f|2
)

Proposition [KLW]: There is a basic connection on NF over M \ Z having
almost semi-meromorphic singularities along Z

D0 := D
TM - (D'1)�1(dz · @/@z)

and
Dbasic('0v) := -'0D0(⇡0v),

where ⇡0 = I-'1�1 orthogonal proj. from TM onto (Im'1)? = (TF )?
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Good connections

Once we have Dbasic on NF , can use 'k and �k to induce compatible
connections eDk on Ek.

Gluing
bD✏

k = (1- �(|s|2/✏))Dk + �(|s|2/✏)eDk.

Since singularities are nearly algebraic, can use resolutions (Hironaka etc),
reduce to divisorial singularity case and prove that

r
�
Z(✏) = �(⇥(bD✏

N)| . . . |⇥(bD✏
0 ))

has a well defined limit when ✏! 0

Multivariable residue theory: Andersson, Cole↵, Herrera, Lärkäng Passare,
Samuelsson-Kalm, Tsikh, Wulcan, Yger, etc.
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Thank you!
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